

Volume Exclusion in Stem Cell Homeostasis

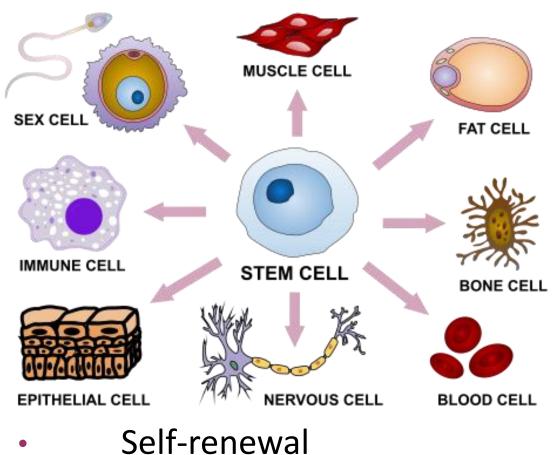
Rodrigo García-Tejera

rodrigo.garcia@ed.ac.uk

Linus Schumacher

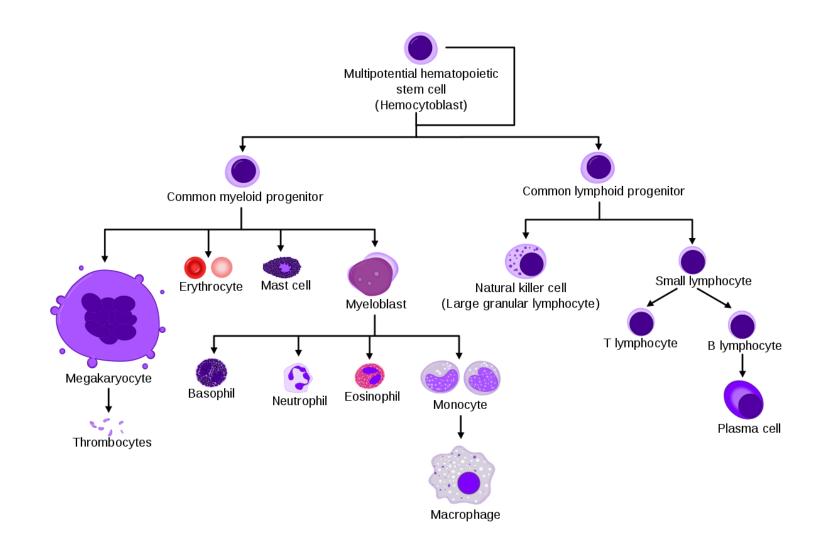
Centre for Regenerative Medicine

What is a stem cell?

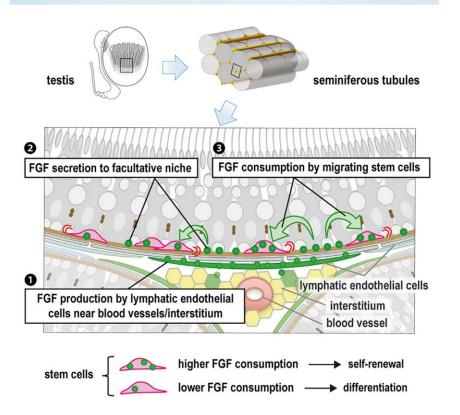


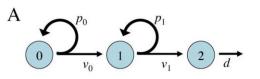
• Tissue formation and repair

Example: hematopoietic system

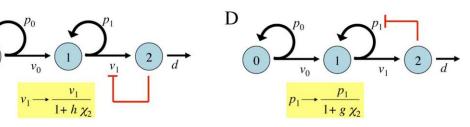


Example: regulatory mechanisms





Stem cell	INP	ORN
Sox2 ⁺ and/or	(transit amplifying,	(terminally-
Mash1 ⁺)	$Ngnl^+$)	differentiated, Ncam+



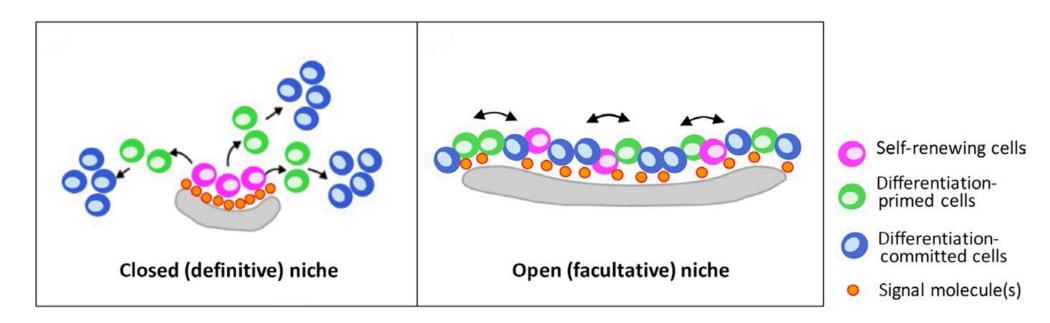
Deterministic models \succ

B

0

Ordinary differential equations \geq

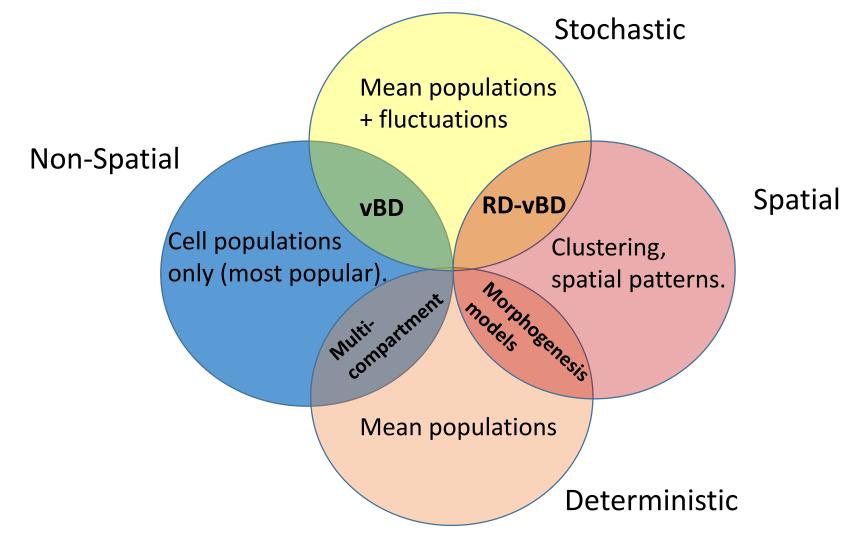
The stem cell niche



- Intestinal crypt
- Bulge (hair follicles)
- Bone marrow (HSCs)
- Mouse testis (SSCs)

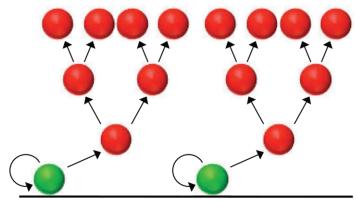
- Is volume exclusion capable of explaining homeostatic behavior in SC populations?
- What are the main hallmarks of volume exclusion as a regulatory mechanism?
- How can we identify the presence or absence of this particular mechanism in different tissues? How can we distinguish it from other regulatory mechanisms?

Cell population models



Critical Birth and Death Process (CBD)

Division asymmetry



A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS*

BY J. E. TILL, E. A. MCCULLOCH, AND L. SIMINOVITCH

DEPARTMENT OF MEDICAL BIOPHYSICS, UNIVERSITY OF TORONTO, AND THE ONTARIO CANCER INSTITUTE, TORONTO, CANADA

Communicated by Boris Ephrussi, November 6, 1963

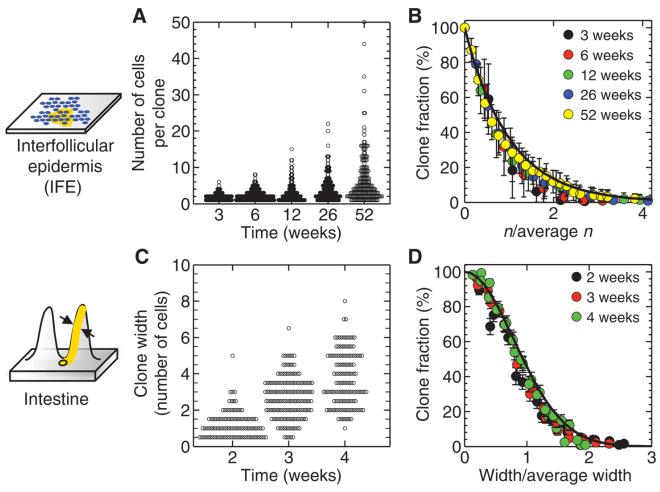
Population asymmetry

 $\succ \quad \text{Critical BD process}$

 $\begin{cases} S \xrightarrow{k_1} 2S \\ S \xrightarrow{k_2} \emptyset \end{cases}$

Stochastic process

Clonal dynamics



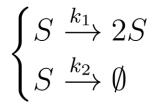
Klein and Simons (2011)

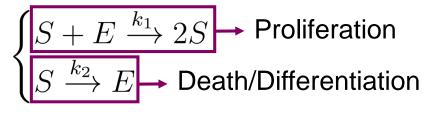
Master equations

$$\begin{cases} S \xrightarrow{k_1} 2S \\ S \xrightarrow{k_2} \emptyset \end{cases} + & \text{Well mixed, dilute gas} \\ \frac{\partial P}{\partial t} = \sum_{r=1}^{R} f_r(\mathbf{n} - S_r, t) P(\mathbf{n} - S_r, t) - \sum_{r=1}^{R} f_r(\mathbf{n}) P(\mathbf{n}, t) \qquad f_r(\mathbf{n}) = k_r \Omega \prod_{i=1}^{N} \frac{n_i!}{(n_i - s_{ir})! \Omega^{s_{ir}}} \\ \\ \overline{G(\mathbf{z}, t)} = \sum_{n_1, \cdots, n_N = -\infty}^{+\infty} \mathbf{z}^n P(\mathbf{n}, t) \qquad P(n, t) = \frac{1}{n!} \frac{\partial^n}{\partial z^n} G(z, t)|_{z=0} \end{cases}$$

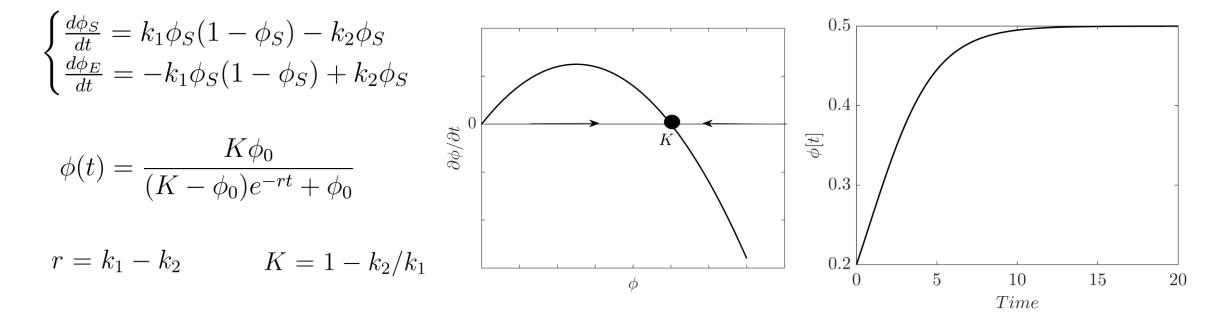
$$\langle n_i \rangle = \frac{\partial G(\mathbf{z}, t)}{\partial z_i} \Big|_{(1, \dots, 1)} \qquad \begin{cases} \langle n_i^2 \rangle = \sum_{\mathbf{n}} n_i^2 P(\mathbf{n}, t) = \left[\frac{\partial}{\partial z_i} z_i \frac{\partial G}{\partial z} \right]_{(1, \dots, 1)} \\ \langle n_i n_j \rangle = \sum_{\mathbf{n}} n_i n_j P(\mathbf{n}, t) = \left[\frac{\partial^2 G}{\partial z_i \partial z_j} \right]_{(1, \dots, 1)} \end{cases}$$

Birth and death process with volume exclusion (vBD)





S + E = N

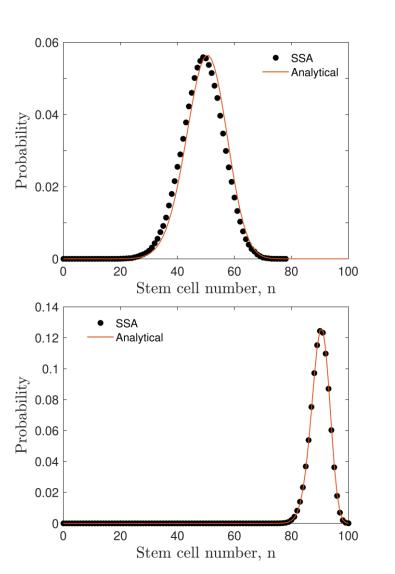


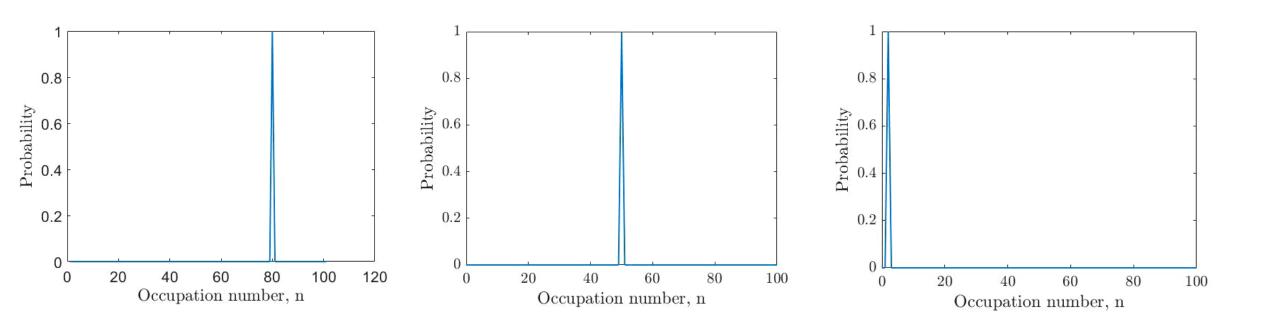
Master equation and Quasi-steady-state approximation

$$\begin{cases} \frac{\partial P}{\partial t} = \{ (E^{-} - I)T(n \to n+1) + (E^{+} - I)T(n+1 \to n) \} P(n,t) \\ T(n \to n+1) = a_{i+1} \\ T(n+1 \to n) = b_{i-1} \\ a_{i} = \frac{(i-1)(n-i+1)}{N(1-\phi^{*})} \quad \phi^{*} \in (0,1) \\ b_{i} = i+1. \end{cases}$$

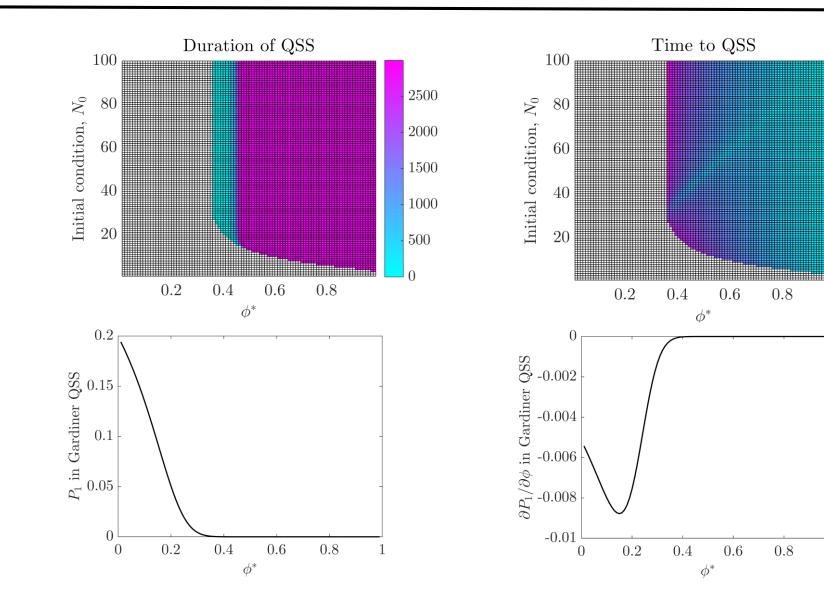
<

$$\begin{cases}
P_0 = 0 \\
P_1 = \frac{(N-1)}{N(2-\phi^*)-1} \frac{N^{N-1}(1-\phi^*)^{(N-2)}}{(N-2)!} P_N \\
P_{N-k} = \sum_{k=1}^{N-2} \frac{N^{k+1}(1-\phi^*)^k}{k!(N-k)} P_N \quad k = 1, 2, \dots N-2 \\
P_N = \left[1 + \frac{(N-1)}{N(2-\phi^*)-1} \frac{N^{N-1}(1-\phi^*)^{(N-2)}}{(N-2)!} + \sum_{k=1}^{N-2} \frac{N^{k+1}(1-\phi^*)^k}{k!(N-k)}\right]^{-1}
\end{cases}$$

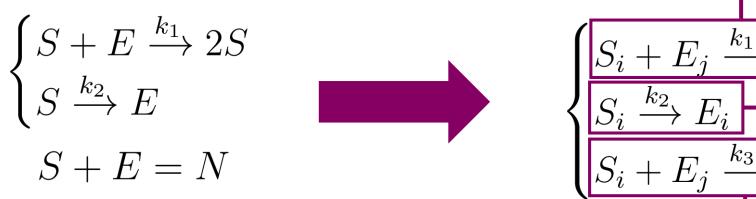




Time-dependent bi-modal behaviour

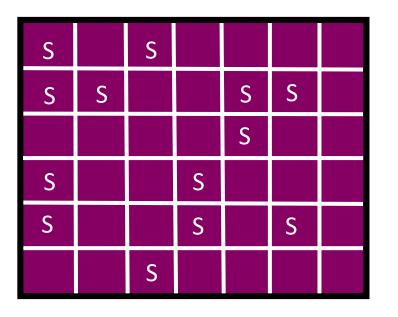


Centre for Regenerative System-size expansion Escriba aquí la ecuación Medicine $N^{1/2}$ $\frac{\partial P}{\partial t} = \{ (E^{-} - I)T(n \to n+1) + (E^{+} - I)T(n+1 \to n) \} P(n,t)$ $\begin{cases} T(n \to n+1) = a_{i+1} \\ T(n+1 \to n) = b_{i-1} \\ a_i = \frac{(i-1)(n-i+1)}{N(1-\phi^*)} \quad \phi^* \in (0,1) \\ b_i = i+1. \end{cases}$ Deterministic $n(t) = N\phi(t) + N^{1/2}\xi$ N^0 **Higher orders** Linear noise approximation (Fokker-Planck) $\frac{\partial \Pi}{\partial t} = N^0 \left\{ \left[k_1 (1 - 2\phi) + k_2 \right] \frac{\partial}{\partial \xi} (\xi \Pi) + \frac{1}{2} \left[k_1 \phi (1 - \phi) \right] + k_2 \phi \right] \frac{\partial^2}{\partial \xi^2} \Pi \right\} + \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial \xi} \left[k_1 (1 - 2\phi) + k_2 \phi \right] \frac{\partial^2}{\partial$ $\frac{\partial \Pi}{\partial t} = \left[k_1(1-2\phi) + k_2\right] \frac{\partial}{\partial \xi} (\xi \Pi) + \frac{1}{2} \left[k_1 \phi (1-\phi)\right] + k_2 \phi \frac{\partial^2 \Pi}{\partial \xi^2}$ $+ N^{-1/2} \left\{ \frac{\partial}{\partial \xi} (\xi^2 \Pi) + \frac{1}{2} \left[k_2 - k_1 (1 - 2\phi) \right] \frac{\partial^2}{\partial \xi^2} (\xi \Pi) + \frac{1}{6} \left[k_2 \phi - k_1 \phi (1 - \phi) \right] \frac{\partial^3}{\partial \xi^3} \Pi \right\} +$ $+\sum_{i=1}^{\infty} N^{-r/2} \left\{ \frac{k_1 \phi (1-\phi)(-1)^{2+r} + k_2 \phi}{(2+r)!} \frac{\partial^{r+2}}{\partial \xi^{r+2}} \Pi + \frac{k_2 - k_1 (1-2\phi)(-1)^{r+1}}{(r+1)!} \frac{\partial^{r+1}}{\partial \xi^{r+1}} (\xi \Pi) \right\}$ $-\frac{k_1(-1)^r}{r!}\frac{\partial^r}{\partial\xi^r}(\xi^2\Pi)$



Proliferation

$$S_i + E_j \xrightarrow{k_1} S_i + S_j$$
 $S_i = 0, 1; E_i = 0, 1$
 $S_i \xrightarrow{k_2} E_i$ Death/Differentiation
 $S_i + E_j \xrightarrow{k_3} E_i + S_j$ $\sum_i S_i + E_i = N$
Diffusion



- Stem-cell Biology poses fascinating challenges that require physical and mathematical approaches.
- Deterministic models and their subjacent stochastic processes can differ significantly in predictions.
- Cellular and developmental biology can inspire novel mathematical/computational approaches that transcend their initial purposes.