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Abstract

Field recordings decrease their temporal complexity during slow-wave sleep (SWS), however, the neu-
ral mechanism for this decrease remains elusive. Here, we show that this complexity reduction is caused
by synchronous neuronal OFF-periods by analysing in-vivo recordings from neocortical neuronal popu-
lations. We find that OFF-periods trap cortical dynamics, making the population activity more recurrent,
deterministic, and less chaotic than during REM sleep or Wakefulness. Moreover, when we exclude OFF-
periods, SWS becomes indistinguishable from Wakefulness or REM sleep. In fact, for all states, we show
that the spiking activity has a universal scaling compatible with critical phenomena. We complement these
results by analysing a critical branching model that replicates the experimental findings, where we show
that forcing OFF-periods into a percentage of neurons suffices to generate a decrease in complexity that
replicates SWS.

Introduction

The loss of temporal complexity is characteristic of unconsciousness – including deep sleep states – and
can be widely observed in field recordings, such as electroencephalograms (EEG) [1–14]. Complexity
can be defined as the diversity of patterns in a given signal, which approximately quantifies its information
content. High complexity is observed from field recordings during Wakefulness, decreasing as awareness
is lost [1,2,4–6,8,13,14], which suggests that consciousness needs a complex substrate [15,16]. Moreover,
these complexity changes are conserved across species (such as mice [17], rats [10,11], monkeys [13], and
humans [3, 6, 8, 12]) and are influenced by circadian rhythms [18], age [19], and pathology [9, 20], pointing
to the existence of a fundamental state of cortical circuits during the sleep-wake cycle.

In the last decade, there has been a significant rise in the use of complexity measures to analyse field
recordings [1–9, 9–14, 17–20] (Fig.S1). Mainly, because these are efficient measures to reveal underlying
non-linear effects. In spite of the use of these measures, we still lack a complete understanding of the
neural-substrate that causes the loss of temporal complexity [21]. In particular, to get the neural substrate
from an EEG, we need to deconstruct the field recording to a set of neural sources (e.g., a set account-
ing for their spiking activity). However, for any given EEG recording, there are infinite ways to combine
neural sources that can be used to recreate it, which is known as the inverse problem [22]. Moreover, the
contribution of extra-neural sources to the field measurements creates another problem [23]. For example,
muscular noise contamination and movement artefacts decrease during sleep [10], potentially confounding
the changes reported in the EEG complexity.
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In contrast, in-vitro studies have shown that complex patterns of spiking activity characterise isolated
neuronal populations [24,25]. Furthermore, slow waves are able to reduce the complexity of these record-
ings [27]. During natural slow-wave sleep (SWS), neuronal activity synchronises in periods of quiescence,
known as OFF-periods, associated with the slow oscillation [29–31]. As these periods hinder neural in-
teractions [28], they would be expected to affect cortical dynamics. For example, a sleep-like OFF-period
activity disrupted complexity in patients with unresponsive wakefulness syndrome [26]. This suggests a
possible link between the loss of temporal complexity during sleep and the occurrence of slow waves and
OFF-periods. Nevertheless, to the best of our knowledge, we still lack a sound justification to claim that (1)
the loss of complexity observed in field recordings during sleep is of neural origin (instead of artefactual)
and (2) is caused by the presence of synchronous OFF-periods.

In this work, we analyse groups of individual neurons in-vivo – hereafter referred as population activity
– during the natural sleep-wake cycle, aiming to understand the origin of the complexity changes in field
recordings and the effects of the slow waves during sleep. We note that estimating the field activity from
unitary recordings is a well poised forward-problem (unlike the inverse problem), allowing us to make in-
ferences about the origin of complexity changes in field recordings. Our results show that the population
activity, in the neocortex and hippocampus, is less complex during SWS because their evolution gets pe-
riodically trapped. These trapped states correspond to the population OFF-periods, which involve almost
all neurons recorded in a single area and cause the field recordings to reduce their complexity. In addition,
the activity during SWS outside the OFF-periods is indistinguishable to that of Wakefulness or REM, and
follows an universal scaling similar to those found in critical phenomena. We confirm this observation by
modelling the cortex as a critical branching process, which besides reproducing our in-vivo results, it shows
how the cortex balances complex patterns and synchronised inactivity (OFF-periods). Overall, our results
indicate that the decrease in complexity is a sleep trait stemming from the cortex neural substrate caused
by the inclusion of synchronous OFF-periods in a near-critical system.

Results

In this work, we study in-vivo recordings from ' 1600 neurons registered in 31 sessions (each session
measures 51 ± 5 neurons from a given cortical area; details in Datasets within the Sect. Methods) for
15 rats in freely moving conditions, cycling through the states of sleep and wakefulness. In what follows,
we present results from applying Recurrence Quantification Analysis (RQA) [32] to the population activity
during the states of wakefulness (Wake), slow-wave sleep (SWS), and rapid-eye movement (REM) sleep,
which explain the complexity changes observed from field recordings in various works [2,3,8–12,14].

Recurrence analysis reduces high-dimensional dynamics to a 2D representation

Population activity defines a high-dimensional phase-space, where neuronal ensembles evolve in trajecto-
ries conforming attractors. Through the sleep-wake states, the ensemble’s attractor changes. Specifically,
the spiking activity from the recorded neuronal ensembles (i.e., the data-sets) detail the system’s instan-
taneous state at any given time and for any sleep-wake state (Fig. 1A). The system’s evolution is then
given by a trajectory, which accounts for the firing counts as they evolve in this phase-space (Fig. 1B).
An attractor is then evidenced as a manifold that attracts different trajectories of the system to the same
region of phase-space – the more convoluted (fractal) the attractor is, the higher the temporal complexity
of its trajectories. However, the attractor resulting from the recordings of any given cortical area is typically
high-dimensional; note that 50 neurons hold a ∼ 50D phase-space. Consequently, by applying RQA we
reduce the dimensions to the analysis of 2D recurrence plots (Fig. 1C).

In this work, recurrence plots are constructed as follows. Let a trajectory be {~x(t1), ~x(t2), ... , ~x(tn)},
where ~x(ti ) is the vector containing the firing counts, xk (ti ), for each neuron in the ensemble (k = 1, ... , N), at
time, ti , with i = 1, ... , T , T being the length of the recording (we choose, T = 10 s). The firing counts for each
neuron, xk , are found from integrating the spike trains within 50 ms time-bins; namely, ti+1 − ti = 50 ms ∀ i .
This choice comes from the physiological definition of an OFF-period, i.e., a period ≥ 50 ms without spikes.
As a result, the firing-variable is an integer that can take values from 0 up to 50 (assuming a maximum of 1
spike per ms). A recurrence plot is then defined by a symmetric matrix, R, whose entries are: R(i , j) = 1 if
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∥∥~x(ti )− ~x(tj )
∥∥ < ε, or R(i , j) = 0 otherwise, with i , j = 1, ... , T . Therefore, a recurrence happens whenever the

system’s trajectory returns to the same region of phase space up to ε, where ε > 0 sets the tolerance level for
defining closeness. Here, we set ε = σp, where σp is the standard deviation for the population activity being
analysed (during wakefulness), namely, the cortical-area’s standard deviation. This tolerance guarantees a
sufficiently sparse recurrence-plot, but still with sufficient points to carry the statistical analyses. In fact, all
our results are robust, being invariant to changes in ε or the bin size (Fig. S2).

Figure 1: Recurrence example of population activity. A Example of spike trains for 5 neurons. Their
firing rates are shown in the bottom panel for the respective time-bins, where an OFF-period can be seen at
time 5. B Resultant phase-space trajectory (evolution), where each axis is the firing rate of a neuron. The
system’s trajectory is shown by the dashed line and its (binned) measurements by the filled circles. For each
measurement, a ball of radius ε (shaded grey area) is used to find when the trajectory recurs to the same
region, defining a recurrence plot (RP). C (Top left panel) RP for the trajectory from B. (Remaining panels)
RP examples, showing diagonal lines, vertical lines, as well as periodic, random, and chaotic trajectories.

Two types of general structures appear in a recurrence plot: diagonal lines, which originate from periodic
trajectories, and vertical lines, which originate by trapped or frozen trajectories. These structures serve to
differentiate between periodic, random, or chaotic trajectories (see corresponding panels in Fig. 1C), which
are then quantified by different metrics (see RQA in Methods). In particular, we measure (i) Recurrence
Rates (density of points in a recurrence plot), RR, (ii) Determinism (proportion of points forming diagonal
lines), DET, (iii) Laminarity (proportion of points forming vertical lines), LAM, (iv) Trapping Times (the av-
erage length of the vertical lines), TT, and (v) Divergences (inverse of the longest diagonal line), DIV. RR
quantifies the overall recurrence of the system, DET measures the smoothness of trajectories, LAM quan-
tifies the proportion of recurrences caused by trapped states, TT measures the average time the system
spends trapped in one of these states, and DIV quantifies the chaoticity in the system’s evolution. Thus, the
predictability of the system’s trajectory is quantified by RR, DET, LAM, and TT, where the larger [smaller]
their values the more [less] predictable. On the other hand, the system’s chaoticity is mainly quantified by
DIV, where the larger [smaller] its value the more [less] chaotic.

Neuronal activity decreases its complexity during slow-wave sleep

Here, we analyse data from the frontal cortex (∼ 900 neurons), where we quantify the recurrence plots for
Wake, SWS, and REM states. Fig 2A shows a representative local field potential (LFP) and spike trains for
each frontal-cortex neuron (Neuron #). The corresponding recurrence plots for these examples are shown in
Fig. 2B, which are constructed from 10 s windows of the firings counts within 50 ms bins (i.e., accumulated
spike-trains). From these panels, we note that SWS exhibits denser recurrence plots than Wake or REM
sleep; namely, SWS has firing patterns that recur more often than Wake or REM sleep. Also, SWS shows
a distinctive square-shaped recurrence pattern lasting approximately 100 ms. This characteristic square-
shape indicates that the frontal-cortex activity during SWS is partly periodic with trappings into frozen states,
making it qualitatively less complex than Wake or REM sleep.

RQA confirms that during SWS the frontal-cortex activity is significantly more predictable and less
chaotic than during Wake or REM sleep (i.e., less complex), as it can be seen from the box-plots in Fig. 2C.
Statistics are shown in table S1. SWS has the highest average RR, DET, LAM and TT, indicating a higher

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.11.448131doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448131
http://creativecommons.org/licenses/by-nc-nd/4.0/


predictability for the neuronal activity during SWS than during Wake or REM sleep. On the contrary, DIV is
larger during Wake and REM sleep than during SWS, indicating that SWS is significantly less chaotic.

Figure 2: Recurrence analysis of in-vivo population activity from the frontal cortex. A Local field
potentials (top trace) and spike-trains raster plots (1 s interval) for a representative rat during Wake (left
panel), SWS (middle panel), and REM sleep (right panel). B Respective recurrence plots constructed from
a 10 s interval of the population activity after binning the spike trains into 50 ms windows. C Recurrence
Quantification Analysis for the sleep-wake states in A and B panels using 5 RQA metrics (titles in panels).
For each metric, box-plots are constructed from the results of 12 animals and 24 sessions (outliers are not
shown).∗ = P < 0.001, ∗∗ = P < 0.0001, ∗ ∗ ∗ = P < 0.00001 (corrected by multiple comparisons).

These results show that during SWS, firing activity from the frontal cortex becomes (quasi-)periodically
trapped in frozen trajectories, reducing the trajectory’s complexity. On the contrary, Wake and REM sleep
states show similar unpredictability and chaoticity for their ensemble firings, which indicate a higher com-
plexity. Altogether, these firing patterns explain the reduction in temporal complexity during sleep that has
been reported in field recordings [2, 3, 5, 8–12, 14]. Moreover, we find that these results hold when we
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divide the frontal-cortex data into specific areas, as well as when we compare them to population activity
registered from the hippocampus (Fig. 3); demonstrating the robustness in our conclusions.

Figure 3: Recurrence analysis for different cortical locations. A Examples of recurrence plots for 10 s
windows of the binned spike-trains (50 ms bins) for different locations during Wake, SWS, and REM sleep.
Panels in each column correspond to the Hippocampus (CA1), secondary motor-cortex (M2), medial pre-
frontal cortex (mPFC), orbito-frontal cortex (OFC), and the anterior cingulate cortex (ACC). B RQA metrics
for all cortical locations in each sleep-wake state, where filled circles are the population averages and error
bars show the corresponding 95 % confidence interval. ∗ = P < 0.05, ∗∗ = P < 0.01, ∗ ∗ ∗ = P < 0.001

Specifically, we select data from the secondary motor-cortex (M2), medial pre-frontal cortex (mPFC),
orbito-frontal cortex (OFC), and the anterior cingulate cortex (ACC). Moreover, we include data from the
hippocampus CA1 region. For these selections, our analysis shows consistently that neuronal spiking-
activity decreases its temporal complexity during SWS (Fig. 3). Statistics for CA1 are shown in table S2.

For each cortex, Fig. 3A is composed of recurrence-plot examples for each sleep-wake state and Fig. 3B
shows the RQA metrics for all cortical locations and their comparative statistics. We can see that all regions
– hippocampus and neocortex – show differences across states. Particularly, from Fig. 3A we can see that
irrespective of the region, Wake and REM have more complex recurrence-patterns than SWS, which again
show trapped regions. From applying RQA to the hippocampus, we find that SWS has the highest RR, DET,
LAM, and TT; similarly to the frontal cortex results (Fig. 2). Also, the DIV is larger during Wake or REM
than during SWS. In addition, we find no significant differences when we compare the RQA across cortical
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locations, RR (P = 0.68), DET (P = 0.39), LAM (P = 0.69), TT (P = 0.21) and DIV (P = 0.46). Therefore,
we conclude that the decrease in complexity during SWS is a global feature of the population activity.

OFF-periods explain the complexity changes during SWS in the neocortex

RQA shows that complexity reduction during SWS is mainly due to the presence of frozen trajectories, which
are the square-like patterns appearing in the recurrence plots. Hence, we study whether the existence of
frozen trajectories correlates with the well-known neocortical OFF-periods [29–31], which are characterised
as ∼ 85 ms-long periods where almost all neurons remain silent [29]; an example is shown in Fig. 4A. The
importance of this study comes from the fact that the EEG reflects the synchronous activity of pyramidal
neocortical neurons [33], where OFF-periods are evidenced by the presence of slow EEG oscillations (0−
4 Hz) [29, 30, 34]. Therefore, the correlation between frozen trajectories and OFF-periods (Fig. 4B) can
provide a physiological mechanism for the loss of complexity during sleep.

Figure 4: Correlation between recurrent spiking activity and OFF-periods in the neocortex during
SWS. A Example of a local field potential and spiking activity for a representative animal, where OFF-
periods are highlighted by shaded areas. B Corresponding recurrence plot, where the number of recur-
rences in time (sum over columns) is shown in the bottom panel together with the OFF-periods (shaded
areas from panel A). C Correlation between RQA metrics – as those in Fig. 3 – and OFF-period’s average
duration; solid lines indicate the LOWESS regression estimate and colours indicate different sessions.

From the example in Fig. 4B, we can see that OFF-periods (red curve) match the times when recurrent
trajectories are in a trapped state (black curve). In general, we find a significant correlation between the
time-series of OFF-periods and that of the trapped recurrences: R = 0.766 ± 0.02, with P = 0 (lower than
the 64-bit computer’s float-point) for all sessions. This means that ∼ 75% of the SWS trapped-recurrences
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capture OFF-period dynamics, while the remaining ∼ 25% is comparable to the Wake/REM recurrences.
In particular, we find that all RQA metrics correlate with the mean duration of OFF-periods (Fig. 4C).

The reason for this is that, the longer the system spends in an OFF-period, the more it stays trapped
in a recurrent state, which translates to square-like patterns in the recurrent plots. This implies that RR,
DET, LAM, and TT are positively correlated with the OFF-period average duration (Fig. 4C). On the other
hand, because of the trapped recurrences, the unpredictability of the system decreases, resulting in a
negatively correlated DIV with the OFF-period average duration (Fig. 4C). Overall, P < 1 × 10−2 for the
linear regression of the different sessions. However, as can be seen from the locally-weighted scatter-plot
smoothing (LOWESS) regression (continuous lines), some RQA metrics and the OFF-periods average-
duration have a non-linear relationship, which is revealed by the departure from a straight line of DET,
LAM, and DIV. In support of these results, we highlight that if we calculate RQA during SWS excluding
OFF-periods (i.e employing the ON-periods), we find that the complexity reduction is lost (Fig.S3).

OFF-periods account for the loss of complexity in field recordings

Figure 5: Synthetic local field potential (sLFP) creation and analysis during the states of Wake,
SWS, and REM. A Example of the sLFP creation. A convolution between the binary raster plot of excita-
tory neurons and a decreasing exponential function is carried to obtain a continuous representation of the
neuronal activity. The ensemble average is the sLFP (bottom signal). B Resultant sLFP examples for the
states of Wake, SWS, and REM. C sLFP power spectra (top panel) and coherence between sLFP and LFP
(bottom panel) for the different sleep-wake states. D Population values for Sample Entropy (top), Permu-
tation Entropy (middle), and Lempel-Ziv Complexity (bottom) of the LFPs and sLFPs. E sLFP complexity
metrics for SWS signals containing OFF and ON periods (All), and SWS containing only ON-periods (ON).
∗ = P < 0.05, ∗∗ = P < 0.01, ∗ ∗ ∗ = P < 0.001
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To improve our understanding of previously reported results from field recordings, such as EEG, ECoG,
or LFP [2, 3, 5, 8–12, 14], we create synthetic local field-potentials, sLFP, and compare them with LFP
recordings (Fig. 5). We construct sLFP from the spiking activity of excitatory neurons (LFPs primarily reflect
dendritic excitatory post-synaptic potentials [33]), assuming that each spike generates an exponentially de-
creasing post-synaptic potential (PSP) (Fig. 5A), and that the field activity arises from the average PSPs.
Namely, we average the PSPs over the population of neurons at each time in order to obtain the instanta-
neous sLFP. This is known as the forward problem [22].

We find that sLFPs have asynchronous low-amplitude activity during Wake and REM sleep, but have
synchronous activity during SWS, showing periodic high-amplitude waves occurring once or twice per sec-
ond (Fig. 5B). Also, we find that the spectral content of the sLFP is similar to that of real LFPs, which can be
seen in Fig. 5C. In particular, SWS has prominent delta oscillations (1-4 Hz), which are coherent to real LFP
delta oscillations (Fig. 5C bottom). Thus, our sLFP construction recovers important LFP features across the
sleep-wake states.

In order to validate the temporal-complexity of our sLFP, we quantify Sample Entropy (SE), Permutation
Entropy (PE) and Lempel-Ziv Complexity (LZ) [1–5,7–13,26], and compare it with that from LFP recordings.
In what follows, we will refer to them just as temporal complexity, since their resultant changes across states
are nearly identical; statistics are reported in tables S3,S4.

Results from this quantification are shown in Fig. 5D. Firstly, we confirm that LFP activity is significantly
less complex during SWS than during REM or Wake, which can be seen from the box-plots in the left
panels of Fig 5D. These results are consistent with previously reported results for EEG and ECoG data
[3, 10–12, 14]. Secondly, we obtain similar temporal complexity values for the sLFP, which can be seen in
the right panels of Fig. 5D. We find that sLFPs also decrease significantly their complexity during SWS.
Finally, we test whether OFF-periods are necessary for the complexity reduction during SWS. Hence, we
construct sLFPs only employing SWS ON-periods; namely, excluding all OFF-periods. Panel E in Fig. 5
shows that when we analyse only the ON-period sLFP, the decrease in complexity during SWS is lost.
In fact, ON-period SWS has significantly higher levels of complexity than SWS containing OFF-periods,
which are comparable to those from Wake or REM states. Therefore, we conclude that OFF-periods are
necessary for the complexity reduction observed in field recordings.

Universal avalanches govern the periods of activity across the sleep-wake states

Our results (Figs. 3, 4, and 5) show that the temporal complexity of the cortex decreases during SWS due to
the presence of OFF-periods. Here, we complement these results by analysing spike avalanches occurring
outside OFF-periods, namely, during ON-periods (which, in principle, could also contribute to decreasing
the complexity of SWS). We note that by definition, spike avalanches only happen during ON-periods.

Avalanches are cascades of activity in quiescent systems [25,35–38], which in our case, correspond to a
surge in spikes within a brain region. This means that an avalanche excludes any OFF-period. Specifically,
an avalanche is initiated (start) by a time-bin that contains at least one spike, happening after a time-bin
without spikes and lasting (finish) until another time-bin without spikes is reached. For example, Fig. 6A
shows an ensemble of spike-trains exhibiting an avalanche, where the time-bin is defined by the average
inter-spike interval (ISI). Two parameters are commonly used to characterise an avalanche: size, i.e., total
number of spikes, and duration, i.e., time from start to finish. The avalanche statistics for each sleep-wake
state are derived from the probability distribution of these parameters [35,36], which can be seen in Fig. 6B.

Our findings show minimal differences between the probability distribution of avalanches’ duration or size
during Wake, REM sleep, or SWS (left and middle panels of Fig. 6B). More importantly, these distributions
collapse to the same scaling function (right panel of Fig. 6B). This implies that the spiking activity during ON-
periods has a universal behaviour, independently of the sleep-wake state. In particular, the scaling function
for the neuronal spiking avalanches approximates a power-law behaviour, which can be characterised by its
exponent, 1/σνz. We find that 1

σνz = 1.11 for all sleep-wake states (inter-quartile range, IQR = 0.05) with
P = 0.21, implying that differences between sleep-wake states are not significant. Similarly, the probability
distributions of avalanche duration and avalanche size also follow power-laws with exponents τ and τt ,
respectively. These exponents are related by τt−1

τ−1 , which for the cortex neurons and all sleep-wake states
is τt−1

τ−1 = 1.19 (IQR = 0.33, with P = 0.31).
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Figure 6: Avalanche statistics for the states of Wake, SWS and REM. A Example of how to compute
a neural avalanche from a raster plot. The average inter-spike interval (ISI) is used to bin (shaded areas)
the raster plot to count the number of spikes per bin. B Left: Distribution of avalanche duration for each
state, where we estimate a τt exponent. Middle: Distribution of avalanche size for each state, where we
estimate a τ exponent. Right: The size of each avalanche as a function of its duration for each state, where
we estimate the 1

σνz exponent. Distribution mean (solid lines) and 95% confidence interval (shaded areas).

We also calculate the branching parameter for the avalanches in each state. This parameter quantifies
how spikes propagate during an avalanche, measuring the average of the number of spikes at time t + 1
given a single spike at time t , i.e., σ = 1

N

∑
(spikes(t + 1) | spikes(t) = 1) [25]. The branching parameter

(σ) yields a median of σ = 1.01 ± 0.01, without differences across states (P = 0.11). Same as with the
avalanche statistics during SWS, we calculate the branching parameter excluding OFF-periods (in order to
avoid isolated OFF-period spikes) [31].

These results show that complexity differences in the sleep-wake states originate primarily from the
distribution of quiescence periods, i.e., OFF-periods. Particularly, studying the ON-periods we show that
once the spiking activity is initiated, it follows an avalanche behaviour with a universal scaling relationship
and irrespective of the sleep-wake state. These conclusions restrict the possible mathematical models that
can be used to describe cortical-dynamics, since the model must be able to reproduce OFF-periods (during
SWS) and the universal avalanches appearing during ON-periods (for any state). In particular, some models
from Statistical Physics allow phase transitions (such as the Ising Model for the ferromagnetic transition),
which are known to show universal behaviours and scaling functions close to the critical point (i.e., close
to the phase transition). Such models have been shown to have similar exponents to the ones we find
here [36].
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Critical branching model for the spiking activity in the cortex

Our analyses of the in-vivo population activity in the rat’s cortex show: that neurons can synchronise quies-
cent states by allowing OFF-periods to shape cortical activity during SWS, and that neurons can maintain
highly complex patterns during active periods by allowing the emergence of avalanches with universal
properties. Here, we test whether the avalanche statistics and the emergence of synchronously quiescent-
periods can be captured by a critical branching model with the addition of an external source that periodically
silences noise. We show that we can tune this model to balance the presence of diverse temporal-patterns
(complexity), allowing to increase information-processing capabilities, and the synchronisation of quiescent
periods (OFF-periods), allowing to have an optimal segregation of information. Our results complement
those from the critical-brain hypothesis [25, 35–42], which assumes that brain activity self-organises (non-
equilibrium) to a a critical point, naturally balancing information processing and transmission.

Figure 7: Modified critical branching model reproduces neuronal activity of Wake and SWS. A Pop-
ulation activity (raster plot) obtained from the model for 50 neurons and their synthetically generated local-
field Potential (sLFP) (see Fig. 5). Left: model without noise silencing and tuned to its critical point, where
the branching parameter σ = 1. Right: model tuned to σ = 1 with an external periodic-silencing of the
noise. B Resultant recurrence plots for the data from panels A. C RQA metrics as function of σ and the
percentage of neurons with the noise periodically silenced. Top left: RQA metrics for the (pristine) critical
branching model as function of branching parameter σ (see Methods). Grey [white] band shows the sub-
critical [super-critical] phase. Remaining panels: differences between RQA metrics for the model with and
without periodic-silencing of the noise, ∆, as a function of the percentage of neurons having their noise
silenced. Colours for ∆ RQA metrics follow those from top left panel C. The horizontal dashed line shows
the Wake-SWS difference for the experimental results. Note that in all cases, circles show the critical model

The critical branching model consists of interacting discrete units that evolve in time, whose internal state
may be resting, spiking, or refractory; thus modelling the neuron’s basic states. The branching parameter,
σ, controls the probability of a spike from unit A at time t affects unit B at time t + 1. When σ = 1, the
system is critical, having a phase transition from a sub-critical quiescent state for σ < 1 (activity dies out
after a small transient) to a super-critical active state for σ > 1 (activity is self-sustained). The units evolve
according to the excitation coming from neighbouring units as well as due to a noisy component (set by
a Poisson distribution), which can randomly change the state of any unit at any given time. The interplay

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.11.448131doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448131
http://creativecommons.org/licenses/by-nc-nd/4.0/


between units interacting due to branching and the noisy substrate recreates a network of higher-order
neurons that receives inputs from lower areas. Here, we add to the branching model a periodic silencing of
the noise for some (adjustable percentage of) units in order to model delta waves and OFF-periods.

Figure 7A shows an example of the resultant spike trains for the branching model (left panel) and our
modified version (right panel); that includes a periodic silencing of the Poisson noise. These results are ob-
tained from using 50 units (similar size to the experimental ensembles recorded) and setting the branching
parameter at the critical point: σ = 1, in agreement with the experimental value measured. Their respective
recurrence plots are shown in Fig. 7B. On the modified branching model, we periodically silence the noise
input arriving to a given set of units during a 250 ms interval (similar to Ref. [35]), and call it as Critical +
OFF-periods. This external forcing is enough to drive the field activity to a synchronised state of quiescent
inactivity (as can be seen from the sLFP on the right panel of Fig. 7A), trapping the population spiking-
activity trajectories into recurrent square-like patterns (Fig. 7B), similar to the experimental results from the
neocortex and hippocampus (see Fig. 2B and 3A). These qualitative results show that, when the critical
branching model is set close to (or on) σ = 1, the model exhibits a similar spiking activity as Wake or REM
sleep states. On the other hand, when a periodic silencing of the noise is added, then the critical branching
model has similar traits to those from SWS state.

We use RQA metrics to quantify the differences between the branching model and the modified model
having a periodic noise-silencing, where results are shown in Fig. 7C. The top left panel contains all RQA
metrics for the branching model with 50 units as a function of σ, where the shaded area signals the sub-
critical phase. These metrics would show a phase transition at σ = 1 when the number of units tends to
infinity (i.e., at the thermodynamic limit), otherwise having smoother curves – as in this panel. For σ = 1, the
model has RR' 0.02, DET' 0.2, LAM' 0.4, DIV' 0.3, and TT' 2.5, which are comparable to the average
RQA values of Figs. 2C and 3B corresponding to Wake and REM sleep states at different cortical locations
containing ' 45±5 neurons. The remaining panels show the change in the RQA metrics when the periodic
noise-silencing is added to the model – changes are shown as a function of the percentage of units having
their noise periodically silenced. By a horizontal dashed line, we also include (as a reference) the SWS RQA
metric relative to the critical branching model value. In other words, this relative SWS metric is found from
taking the value obtained from the experimental average RQA metric shown in Fig. 3B and subtracting the
critical branching model RQA metric from the top left panel in Fig. 7C. For example, during SWS, DET' 0.6
for all cortical locations in Fig. 7C, while DET' 0.2 for the critical branching model (σ = 1). Hence, the
relative SWS value is ∆DET' 0.4. Using this, we can find the percentage of units with periodically-silenced
noise that are needed to recuperate the particular experimental values shown in Fig. 3B.

From the modified critical branching model, we find that as the number of units with an OFF-period
increases, RQA metrics cross those observed during SWS from the in-vivo recordings (horizontal dashed-
line). In particular, when the model dynamics is at the critical point, σ = 1, it is enough to apply a periodic
noise-silencing to 40 − 60% of the units to reproduce the RQA values during SWS (intersection of the ∆
RQA metrics with the corresponding horizontal dashed-lines); with the exception of RR, which requires
80%. On the contrary, both the sub- and super-critical models need a considerably larger percentage to
reproduce the observed SWS values – between 80 − 100% (with the exception of RR). Therefore, these
results imply that: i) the branching model needs to be close to σ = 1 to reproduce the recurrent properties
observed during Wake or REM sleep from in-vivo extra-cellular recordings, and ii) that the inclusion of a
periodic noise-silencing to 40−60% of the units reproduces the recurrent properties observed during SWS.

Discussion

It has been widely reported the field recordings’ complexity decreases during SWS [2,3,5,8–12,14]. From
a neural activity, the reason behind this reduction remained elusive. Here, we show: i) that the presence
of OFF-periods in neuronal population activity correlates with the complexity reduction of the LFP during
SWS (Fig. 4); ii) that the existence of OFF-periods is necessary for this complexity reduction (Figs. 5 and
6); and iii) that introducing OFF-periods to a critical branching model is sufficient (enough) to reproduce the
SWS characteristics from the in-vivo recordings (Fig. 7). In particular, we show (ii) by analysing synthetically
generated LFPs without OFF-periods, which maintain complexity levels comparable to wakefulness or REM
sleep, and by finding a universal behaviour for the spike avalanches’ duration and size, which appears
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during SWS ON-periods, REM sleep, and wakefulness. Overall, our findings suggest that when the cortex
complex activity is is hindered by synchronous OFF-periods, consciousness fades.

Recurrence quantification analysis and persistent homology

Our work is focused on the analysis of spiking activity from in-vivo population recordings during the main
sleep-wake states and at different cortical locations (Figs. 2 and 3). We employ RQA to retrieve the main
dynamical features of the population activity from a 2D recurrence plot and quantify its complexity (Fig. 1).
A significant advantage of RQA over methods that require dimensionality-reduction algorithms, is that RQA
is robust to parameter tuning (e.g changing the recurrence tolerance or the spike count bin-width, Fig. S2),
is computationally efficient (shorter time-series are sufficient, 10 s windows are enough to find differences
between states), and it keeps results and interpretations clear.

We note that RQA has parallelisms to topological data-analysis, such as persistent homology, which
relies on studying the topology of the high-dimensional cloud of points (manifold) that the system’s evolution
creates in phase-space [43]. For example, persistent homology has been applied to neurons from the
anterior nucleus of the thalamus, showing that a ring structure appears in phase space during Wake and
REM sleep but is lost during SWS [43]. However, when we apply this method to our dataset (as can be
seen from Fig. S4), we find no significant differences in the manifold’s topology of the sleep-wake states
(P > 0.05). The lack of similar findings suggests that the neocortex has a different phase-space attractor
than that of the anterior nucleus, which is irreducible to a ring-like topology and instead looks like a cloud of
points without any simple low-dimensional feature (see Fig. S4).

OFF-periods reduce the complexity of cortical activity during SWS

We find that the evolution of the population spiking activity within its manifold is significantly altered during
SWS, in contrast to the unchanged attractor’s topology. In particular, we show that the alteration of the
cortex’s dynamics during SWS is due to the presence of population OFF-periods, which are observed as
synchronous silences between neurons (i.e., quiescent activity in Fig. 4). For example, one can think that
the spiking activity at any location in the cortex during Wake, REM sleep, and SWS states can start at
a similar location in phase space. However, as the population activity evolves and a trajectory is traced
for each of the sleep-wake states, the SWS’s trajectory is the only one attracted to the origin whenever
an OFF-period appears (zero population activity) [29, 31, 45, 46]. Namely, OFF-periods disrupt the spiking
activity during SWS, bypassing the causal interactions between neurons [26–28].

By showing that OFF-periods reduce the complexity of neocortical activity during SWS, we can explain
two different observations. On the one hand, slow waves (0.1 − 1 Hz) and delta waves (1 − 4 Hz) have
been associated to the loss of complex neuronal-interactions during sleep [26–28]. This observation is
consistent with our power spectrum and coherence results (see Fig. 5C), which further confirms the rela-
tionship between OFF-periods and delta waves [29, 34, 45]. Moreover, it was speculated that the nature of
the undergoing oscillation (theta vs slow waves) could constrain the firing pattern repertoire and its com-
plexity [44]. We confirm this idea, showing that the oscillation’s neural substrate determines complexity. On
the other hand, it has been shown for individual neurons that the complexity of firing patterns decreases
during SWS [5]. This decrease can be explained by the OFF-periods, as their appearance causes neurons
to remain silent during synchronous intervals of quiescent activity, making their overall firing-patterns less
complex. However, we note that when analysing the firing patterns of our neurons independently (Supple-
mentary Material), we find that a considerable number of neurons maintain a complex pattern even during
SWS (see Fig. S7). Therefore, we argue that the complexity reduction is in fact a population-level phenom-
ena. In support of this idea, we show that the complexity differences between Wake or REM sleep and
SWS increase as the number of simultaneously recorded neurons grows (see Fig. S5).

It is important to note that we also observe a reduction in complexity during SWS for the neurons
from the hippocampus, in spite of being an area without OFF-periods [47]. The population activity of the
hippocampus during SWS oscillates between periods of decreased spiking activity (almost quiescent) and
bursts of spiking activity (during sharp-wave ripples). This alternation in the firing patterns has been called
bi-stability, or excitability, and is also a common trait to neocortical sleep [47]. Therefore, in both areas, the
change in their respective population-dynamics correlates to the complexity reduction during SWS.
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Measuring complexity from field recordings

The complex nature of brain activity, and its reduction during unconscious’s states, has been extensively
reported using classical neuroscience approaches [48,49]. In particular, the power spectrum of field record-
ings has been shown to exhibit a power-law decay, f−α, for a broad frequency range f , similar to a f−1 = 1/f
pink noise. Recently, it has been shown that the exponent governing such decay becomes smaller than 1
(i.e., a more pronounced decay) during sleep and anaesthesia [48, 49]. We confirm this finding on power-
spectra from field recordings of LFPs and electrocorticograms, ECoGs (see Fig. S6). We find similar decay
exponents during SWS and REM sleep (αsleep ' 2), which differ from wakefulness’s power-spectrum decay.
Also, we note that the difference in the exponents is significantly higher in ECoGs, where αwake ' 1, than in
LFPs, where αwake ' 2 as during sleep. This could be suggesting the presence of extra-neural sources dur-
ing wakefulness that alter the ECoG recordings power-spectrum decay, but disappear at the LFP recording
level. However, further research is required.

These observations are also consistent with our RQA of the rat’s cortex neuronal activity. We justify
that OFF-periods are responsible for reducing the complexity of field recordings during SWS by generating
synthetic field recordings from the population activity (Fig. 5). From this synthetically constructed LFP, we
see that complexity reductions during SWS are lost when we eliminate the OFF-periods from the construc-
tion (see Fig. 5E). Because OFF-periods and delta waves promote the appearance of low frequencies, it is
expected that the power-spectrum decay becomes steeper (i.e., α grows).

Spiking periods show universal dynamics across states

An important result that we find is that the population dynamics during SWS’s ON-periods is indistinguish-
able to the population dynamics during Wake or REM sleep. This strengthens our claim, that OFF-periods
are mainly responsible for the change in SWS complexity. As our results from RQA (Fig. 4,S3), field com-
plexity metrics (Fig. 5), and avalanche statistics (Fig. 6) show, while spiking activity is occurring (i.e., during
ON-periods), SWS behaves exactly as (if not more complex than) Wake or REM sleep.

Specifically, we show that neuronal avalanches of length t contain an average of f (t) spikes, where f is
an scaling function independent of the sleep-wake state.This means that these avalanches from the frontal
cortex of rats, follow a universal behaviour, which was previously reported in the visual cortex [35]. We find
that the scaling exponent ( 1

σνz = 1.11) and the exponent relating the avalanche statistics ( τt−1
τ−1 = 1.19) are

relatively similar, which is an expected relationship when a system is close to criticality [36]. Therefore our
results support the hypothesis that complex cortical activity arises from near-critical dynamics [36,40].

OFF-periods are sufficient to reproduce the complexity reduction in a critical model
of the cortex

To complement our results justifying that OFF-periods reduce the complexity of cortical activity, we show
that their introduction into a cortical model is sufficient to generate a decrease in complexity. Hence, we first
show that a critical branching model recovers the experimental RQA values during Wake/REM. Then, we
periodically silence the noise that is inherent to the model as we observe the RQA change, mimicking SWS
activity. This periodic silence reproduces OFF-periods, which are generated from pre-synaptic inhibition
into principal cells of the cortex [50].

We find that near the critical point of the model, the percentage of neurons we need to force to get
a SWS-like state is optimal with respect to either the sub- or super-critical state. For instance, silencing
the input to 40 − 60%, creates a complexity reduction similar to that observed experimentally. This further
adds to the idea of criticallity in the brain, which would explain the increased complexity [24], information
processing and transmission [25], and dynamical range [39].
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Methods

Datasets

We analyse three datasets: Watson et al. (Population activity neocortex, available at http://crcns.org/data-
sets/fcx/fcx-1) [51], Grosmark and Buzsaki (Population activity hippocampus, available at http://crcns.org/data-
sets/hc/hc-11) [52], and Gonzalez et al 2019 [10] (ECoG neocortex, available at request). The reader is
referred to the original publications for full details of the experimental methods. We provide a summary
below.

For the frontal cortex dataset, silicon probes were implanted in frontal cortical areas of 11 male Long
Evans rats. Recording sites included medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC),
premotor cortex/M2, and orbitofrontal cortex (OFC). Recordings took place during light hours in the home
cage (25 sessions, mean duration of 4.8 hs ± 2.2 std). We note that we exclude BWRat19 032413 from the
analysis, as it did not contain REM sleep. Data was sampled at 20 kHz. To extract LFPs, recordings were
lowpassed and resampled at 1250 Hz. To extract spikes, data was highpass filtered at 800 Hz, and then
threshold crossings were detected. Spike sorting was accomplished by means of the KlustaKwik software.
Sleep-wake states were identified by means of principal component analysis. SWS exhibited high LFP PC1
(power in the low <20 Hz) and low EMG. REM sleep showed high theta/low EMG cluster, and a diffuse
cluster of low broadband LFP with higher EMG. Wake showed a diffuse cluster of low broadband LFP, with
higher EMG, and a range of theta. OFF periods were extracted as periods of population silence lasting at
least 50 ms and no more than 1250 ms. Conversely, ON periods consisted of periods of population firing
between OFF periods with at least 10 total spikes and lasting 200-4000ms. For a further description of
these methods, see [51].

For the hippocampal dataset, silicon probes were implanted in the dorsal hippocampus (CA1) of 4 male
Long Evans rats (7 recordings total). LFP and spikes were extracted similarly to the cortical dataset. A
similar criterion as before was employed to identify the sleep-wake states; for a full description, see [53].

For the ECoG dataset, 12 animals with 7 steel screw electrodes placed intracranially above the dura
matter were analysed. The recorded areas included motor, somatosensory, visual cortices (bilateral), the
right olfactory bulb, and cerebellum, which was the reference electrode. Data was sampled at 1024 Hz,
employing a 16 bits AD converted. The states of sleep and wakefulness were determined in 10-s epochs.
Wake was defined as low voltage fast waves in the motor cortex, a strong theta rhythm (4-7 Hz) in the visual
cortices, and relatively high EMG activity. NREM sleep was determined by the presence of high voltage
slow cortical waves together with sleep spindles in motor, somatosensory, and visual cortices associated
with a reduced EMG amplitude; and REM sleep as low voltage fast frontal waves, a regular theta rhythm in
the visual cortex, and a silent EMG except for occasional twitches. Additional visual scoring was performed
to discard artefacts and transitional states.

Recurrence quantification analysis

Prior to analysing the recurrences [32,54,55], we bin the spike data to 50-ms firing count bins.
Given a system X = [−→x (t1),−→x (t2), ...,−→x (tn)] formed by the distinct time measurements of the vector−→x , whose entries are the different elements of the system, a recurrence plot is formed creating a matrix R

whose entries are given by: {
R(i , j) = 1

∥∥−→x (i)−−→x (j)
∥∥ ≤ ε

R(i , j) = 0
(1)

.
Where ε > 0 is the accepted tolerance level. Thus, a recurrence between two time points would only

occur if the system was located in a similar region (state) of the phase space at the respective times (up
to an error of ε). In our case, ε was set to 1 standard deviation of the population firing rate (spikes were
summed across neurons)

To quantify the patterns arising from recurrence plots, we employed common measures form recur-
rence quantification analysis (RQA). The metrics employed (defined below) were: recurrence rate (RR),

14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.11.448131doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448131
http://creativecommons.org/licenses/by-nc-nd/4.0/


determinism (DET), laminarity (LAM), trapping time (TT) and divergence (DIV)

RR =
1

N2

N∑
i ,j=1

Ri ,j (2)

DET =

∑N
l=lmin

lP(l)∑N
l=1 lP(l)

(3)

LAM =

∑N
v=vmin

vP(v )∑N
v=1 vP(v )

(4)

TT =

∑N
v=vmin

vP(v )∑N
v=vmin

P(v )
(5)

DIV =
1

Lmax
(6)

Where P(l)[P(v )] indicate the probability of finding a diagonal [vertical] line of length l [v ], and Lmax
indicates the longest diagonal line, excluding the identity line.

Synthetic LFPs and field complexity measures

To construct the sLFP, we convolve the spike times (binned into a 125 Hz sampling frequency) of each
excitatory neuron Sn by an exponentially decreasing kernel. Therefore, the convolved spikes Cn of the nth
neuron are obtained as:

Cn(t) = Sn(t) ∗ e
−t
τ (7)

where the symbol ∗ is the convolution operator and τ is the exponential time constant. The τ constant is
set to 24 ms for all putative excitatory neurons, which is a reasonable mEPSP time-constant for a pyramidal
neuron in the frontal cortex [57]. Note that this selection of τ is also validated internally, as it allows to
recover important LFP features in the sLFP.

After carrying out the convolution for each neuron, the average is taken across the neurons to produce
the sLFP.

sLFP(t) =
1
N

N∑
n=1

Cn(t) (8)

Where N is the total number of simultaneously recorded neurons.
We analyse the sLFPs frequency content by calculating its power spectral density by means of Welch’s

algorithm employing the signal.welch scipy python 3 function (https://www.scipy.org), setting a 1 sec moving
Hanning window, no overlap, and a 1 Hz frequency resolution. To get the sLFP-LFP coherence, we employ
the signal.coherence scipy function with the same parameters as the frequency spectrum. We note that
the LFP is averaged across channels and downsampled to 125 Hz prior to estimating the coherence to the
sLFP.

To quantify the sLFP and LFP time-series complexity, we employ thre metrics widely employed in the
literature, namely Permutation Entropy, Sample Entropy and Lempel-Ziv Complexity [1–4, 7–12, 14]. We
employ the antroPy python 3 package (https://github.com/raphaelvallat/antropy).

Permutation Entropy [56] consists in encoding a time-series {x(t), t = 1, ... , T}, by dividing it into b(T −
D)/Dc non-overlapping vectors, where byc denotes the largest integer less than or equal to y and D is the
vector length, which is much shorter than the time-series length (D � T ). Then, each vector is classified
according to the relative magnitude of its D elements, yielding an ordinal pattern (OP). For example, for
D = 2, the vectors have only two possible OPs for any time ti : either x(ti ) < x(ti+1) or x(ti ) > x(ti+1), which
yield either the 0 or 1 symbol, respectively. In the present report we employ D = 3, and τ = 5 (τ being
the distance between succesive time-stamps in each vector, in our case each vector is then constructed as
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[x(t), x(t + 5), x(t + 10)]). After this, the Shannon entropy (SE) [58] is computed to obtain the Permutation
Entropy.

H(S) = −
∑
α∈S

p(α) log [p(α)] (9)

where p(α) is the probability of finding symbol α in the signal (among the set of symbols S) and the sum-
mation is carried over all possible symbols.

Similar to Permutation Entropy, Sample entropy consists of dividing a time-series {x(t), t = 1, ... , T}
into a series of D sized vectors (X (i)), noting that D � T . A distance function (d) is then applied to vector
pairs (with different indexes, like X (i), X (j)), which in our case was the Chebyshev distance. From this A
is obtained as d [Xm+1(i), Xm+1(j)] < r and B as d [Xm(i), Xm(j)] < r . Sample entropy is then defined as:
SampEn = −log( A

B ) In our case D = 3, note that we downsample the signals by a factor of 5, in order to
match the permutation entropy τ .

Lastly, we employ the Lempel-Ziv complexity algorithm. Prior to apply this function, we binarized the
sLFP signals by its mean value. Meaning that all time-points above the signal’s mean are converted to a 1
and all below to a 0. After that the Lempel-Ziv complexity is estimated counting the the number of different
substrings encountered as the sequence is viewed from beginning to the end. Then we normalise it as
LZn = #substrings

n/log(n) , making the metric less dependent on the signal’s length.

Single neuron complexity measures

To quantify the complexity of the firing patterns of single neurons, we employ two different strategies, the
Lempel-Ziv complexity of the raster plots and the inter-spike intervals (ISIs) entropy. For the ISI entropy,
we construct the ISI histogram employing 18 bins equally spaced between 0 and 800 ms. After that, the
Shannon entropy is computed as mentioned above. We note that we compute the Lempel-Ziv complexity
as defined in the previous section.

Neuronal avalanches

To study scaling relationships in population dynamics, we quantify neuronal avalanches following previous
studies [35, 36]. First multy-unit activity is binned, employing the average ISI. Then, we measure the time
and number of spikes between one empty bin (lacking spikes) to the following empty bin. The duration of the
avalanche is the number of bins it spans, and its size the number of spikes it contains. From these two quan-
tities, the probability distributions are derived. We use the powerlaw (https://pypi.org/project/powerlaw/1.3.4/)
python 3 package to construct these distributions and obtain their exponents (τt and τ ). We compute the
average number of spikes as a function of the avalanche duration to obtain the scaling relationships across
states. From this function we obtain the exponent 1

νσz by means of an ordinary least square fit on a log-log
scale. We also calculate the branching parameter for the avalanches in each state, measuring the average
of the number of spikes at time t + 1 given a single spike at time t , i.e., σ = 1

N

∑
(spikes(t + 1) | spikes(t) = 1)

[25].

Critical branching model

The critical branching model consists of 50 interacting units randomly connected in a Erdos-Renyi topology
(each pair of neurons has a 0.01 probability to be connected). Each unit has 3 possible states: resting, firing
or refractory. The transition between resting and firing can either occur from the excitation coming from a
connected neuron firing in the preceding time, or by the intrinsic Poisson noise that each neuron receives
independently. The Poisson noise is set by generating a random matrix whose values come from a [0, 1]
uniform distribution, and then setting for each entry a spike if the value is less than 1 − e−λ (λ = 0.014).
Once a neuron fires, it goes deterministically to the refractory state, in which it cannot be excited either from
a connected neuron or from the Poisson noise. After 1 step in a refractory state, each neuron goes to the
resting state and becomes excitable again. The interaction among neurons is controlled by the branching
parameter (σ), which regulates the overall excitability of the system. For instance, if neuron i fires, the
probability that a neighbouring unit fires is defined as Pprop = σ/Di , where Di is the average node degree for
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unit i. To obtain the plots shown in Fig. 7, we employ 1 million iterations from each network, and average
the results over 100 trials. To obtain a SWS state, we periodically silenced the Poisson noise coming to the
network in a 250ms step with a 4Hz frequency.

Persistent homology

To study the topology of the neural manifolds during the states of sleep and wakefulness, we employ similar
procedures as [43]. Briefly, we bin the spike data to 100-ms firing count bins and then reduce its dimension-
ality by means of the isomap algorithm to a 3d representation. After that, we calculate persistent homology
by means of the ripser python3 package, limiting the analysis to Betti 0 and 1 numbers. To compare between
conditions, we select the most persistent Betti 0 and 1 components for each session in each state.

Statistics

We present data as regular boxplots showing the median, the 1st and 3rd quartiles, and the distribution
range. Because of the complexity metrics we analyse, we employ non-parametric statistics. In particular
we use the Friedman test (available with the scipy.stats) to compare the results among states (Wake-SWS-
REM) with the Siegel post-hoc test applying the Benjamini-Hochberg false discovery rates correction (avail-
able with the scikitlearn python 3 package (https://scikit-learn.org/stable/)) . We set P < 0.05 for a result to
be considered significant. In addition to P-values, we also reprt Cohen’s d, which quantifies the magnitude
of a result in terms of a standardised difference between conditions, considering an effect size to be large if
Cohen’s d is > 0.8.

For the power spectrums and avalanche results we present the data as the mean with the 95% con-
fidence interval (obtained through bootstrap sampling). For the correlation analysis, we employ LOWESS
regression to fit the best estimate to the scatter plot, by means of the regplot function available at seaborn
(https://seaborn.pydata.org) python 3 function. As LOWESS regression doesn’t have an associated P value,
we employ a linear regression for each session and report the result significant only if P < 0.05 for all
sessions. Additionally, to correlate the OFF-periods to the recurrence sum, we employ the point-biserial
correlation pointbiserialr available at scipy https://scipy.org.

Code availability

The codes developed to analyse population activity recurrences are freely available at https://github.
com/joaqgonzar/Recurrence_population_activity, including the recurrence functions and jupyter note-
book examples.
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Supplementary Material

;

Figure S1: Complexity analysis is a growing framework to understand EEG dynamics. Left: Number of
Pubmed papers published in the last 50 years containing the words (in their abstract or title): Complexity
and EEG or Entropy and EEG. Right Number of Pubmed papers published containing the words: Com-
plexity and EEG and Sleep, or Entropy and EEG and Sleep. Data comes from the Pubmed database
(https://pubmed.ncbi.nlm.nih.gov)

Figure S2: RQA is robust to parameter choice. A RQA metrics for different tolerance levels ε for defining
recurrence in phase-space. We vary ε from 0 std to 4 std of the population firing counts. Setting ε to 0
means that a recurrence occurs between two times for the exact same neuronal firing pattern. The time
bin is kept fix at 50ms. B RQA metrics for different time binning of the population activity. Time bins are
changed from 20 ms to 200 ms in order to define the firing variable for each neuron. The ε is kept fix at 1
std. The mean and its corresponding 95 % confidence intervals are shown for each plot.
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Figure S3: Recurrence analysis during the SWS ON-periods. A Recurrence plots constructed from 10 s
intervals after binning the spike-trains in 50 ms windows. B Recurrence Quantification Analysis using 5
RQA metrics (titles in panels). For each metric, box-plots are constructed from the results of 12 animals
and 24 sessions (outliers are not shown).NS: Non-significant (P > 0.05)

Figure S4: Persistent Homology during the sleep-wake states in the neocortex. Top panels: Point cloud
obtained after dimensionality reduction. A representative animal is shown during Wake, SWS and REM
sleep. Bottom panels: Betti 0 (HO) and Betti 1 (H1) barcodes for the same animal shown in the top panel.
The length of each bar shows the level of persistence of each Betti 0 and 1 component.
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Figure S5: RQA differences between states correlate with the number of neurons recorded. Absolute
RQA differences between states as a function of the number of simultaneously recorded neurons. Each
dot shows a recording session while the solid line the linear regression estimate with its 95 % confidence
interval. A shows the SWS-Wake difference, while B the SWS-REM difference.

;

Figure S6: Power spectrum slope differs between states. A LFP [ECoG] recordings coming from the
frontal cortex [M1 cortex] during the states of Wake, SWS and REM sleep. The mean and its corresponding
95 % confidence intervals are shown for each plot. B Power spectrum exponents calculated through ordi-
nary least-squares fit on a log-log scale (OLS) or through the FOOOF parametrized spectra (FOOOF) [59]
which only includes the aperiodic component.

Figure S7: Single neurons deviate from the ensemble behaviour. Complexity of single neuron firing pattern
between Wake and SWS. Each bar shows the total number of neurons whose temporal complexity de-
creased, remained equal or increased. 2 metrics are shown. Left: Lempel-ziv complexity of single neuron
binary raster. Right: Inter-spike interval histogram entropy
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Metric W-SWS-REM W-SWS REM-SWS
P P Cohen’s D P Cohen’s D

RR 1.8× 10−8 4.6× 10−4 0.7 9.7× 10−9 1.0
DET 1.1× 10−8 7.9× 10−5 1.6 9.7× 10−9 2.0
LAM 3.3× 10−9 2.2× 10−5 1.7 4.0× 10−9 1.9
TT 1.8× 10−8 4.2× 10−5 1.2 2.3× 10−8 1.5
DIV 9.5× 10−8 7.9× 10−5 1.1 1.2× 10−7 1.2

Table S1: Statistical comparisons Fig 2C

Metric W-SWS-REM W-SWS REM-SWS
P P Cohen’s D P Cohen’s D

RR 1.5× 10−3 1.8× 10−2 2.4 1.3× 10−3 1.6
DET 8.0× 10−4 3.6× 10−2 4.4 5.3× 10−4 3.2
LAM 8.0× 10−4 3.6× 10−2 5.2 5.3× 10−4 3.5
TT 8.0× 10−4 3.6× 10−2 2.9 3.5× 10−4 2.5
DIV 1.5× 10−3 1.8× 10−2 2.9 1.3× 10−3 2.4

Table S2: Statistical comparisons Fig 3B

Metric W-SWS-REM W-SWS REM-SWS
P P , Cohen’s D P, Cohen’s D

Sample Entropy 6.2× 10−7 1.4× 10−2, 0.7 2.7× 10−7, 2.4
Permutation Entropy 4.1× 10−9 1.3× 10−3, 1.2 1.6× 10−9, 1.6
Lempel-Ziv Complexity 1.9× 10−9 4.2× 10−5, 3.3 1.6× 10−9, 3.6

Table S3: Statistical comparisons for the complexity metrics on real LFPs, shown in Fig 5D

Metric W-SWS-REM W-SWS REM-SWS SWS(All)-SWS(On)
P P , Cohen’s D P, Cohen’s D P, Cohen’s D

Sample Entropy 2.6× 10−7 3.0× 10−6, 1.35 3.0× 10−6, 1.5 1.6× 10−6, 1.6
Permutation Entropy 2.2× 10−7 1.0× 10−6, 0.4 1.1× 10−5, 0.8 1.1× 10−7, 1.2
Lempel-Ziv Complexity 2.5× 10−7 6.0× 10−6, 0.76 3.0× 10−6, 1.9 1.2× 10−7, 2.0

Table S4: Statistical comparisons for the complexity metrics on synthetic LFPs, shown in Fig 5D,E
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